3.131 \(\int \frac{1}{\sqrt{x} \sqrt{x (a+b x+c x^2)}} \, dx\)

Optimal. Leaf size=47 \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{x} (2 a+b x)}{2 \sqrt{a} \sqrt{a x+b x^2+c x^3}}\right )}{\sqrt{a}} \]

[Out]

-(ArcTanh[(Sqrt[x]*(2*a + b*x))/(2*Sqrt[a]*Sqrt[a*x + b*x^2 + c*x^3])]/Sqrt[a])

________________________________________________________________________________________

Rubi [A]  time = 0.0756258, antiderivative size = 47, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.136, Rules used = {1997, 1913, 206} \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{x} (2 a+b x)}{2 \sqrt{a} \sqrt{a x+b x^2+c x^3}}\right )}{\sqrt{a}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[x]*Sqrt[x*(a + b*x + c*x^2)]),x]

[Out]

-(ArcTanh[(Sqrt[x]*(2*a + b*x))/(2*Sqrt[a]*Sqrt[a*x + b*x^2 + c*x^3])]/Sqrt[a])

Rule 1997

Int[(u_)^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Int[(d*x)^m*ExpandToSum[u, x]^p, x] /; FreeQ[{d, m, p}, x] &&
GeneralizedTrinomialQ[u, x] &&  !GeneralizedTrinomialMatchQ[u, x]

Rule 1913

Int[(x_)^(m_.)/Sqrt[(b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.)], x_Symbol] :> Dist[-2/(n - q), Sub
st[Int[1/(4*a - x^2), x], x, (x^(m + 1)*(2*a + b*x^(n - q)))/Sqrt[a*x^q + b*x^n + c*x^r]], x] /; FreeQ[{a, b,
c, m, n, q, r}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && NeQ[b^2 - 4*a*c, 0] && EqQ[m, q/2 - 1]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{x} \sqrt{x \left (a+b x+c x^2\right )}} \, dx &=\int \frac{1}{\sqrt{x} \sqrt{a x+b x^2+c x^3}} \, dx\\ &=-\left (2 \operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{\sqrt{x} (2 a+b x)}{\sqrt{a x+b x^2+c x^3}}\right )\right )\\ &=-\frac{\tanh ^{-1}\left (\frac{\sqrt{x} (2 a+b x)}{2 \sqrt{a} \sqrt{a x+b x^2+c x^3}}\right )}{\sqrt{a}}\\ \end{align*}

Mathematica [A]  time = 0.033077, size = 72, normalized size = 1.53 \[ -\frac{\sqrt{x} \sqrt{a+b x+c x^2} \tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+b x+c x^2}}\right )}{\sqrt{a} \sqrt{x (a+x (b+c x))}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[x]*Sqrt[x*(a + b*x + c*x^2)]),x]

[Out]

-((Sqrt[x]*Sqrt[a + b*x + c*x^2]*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])])/(Sqrt[a]*Sqrt[x*(a +
x*(b + c*x))]))

________________________________________________________________________________________

Maple [A]  time = 0.011, size = 64, normalized size = 1.4 \begin{align*} -{\sqrt{x}\sqrt{c{x}^{2}+bx+a}\ln \left ({\frac{1}{x} \left ( 2\,a+bx+2\,\sqrt{a}\sqrt{c{x}^{2}+bx+a} \right ) } \right ){\frac{1}{\sqrt{x \left ( c{x}^{2}+bx+a \right ) }}}{\frac{1}{\sqrt{a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(1/2)/(x*(c*x^2+b*x+a))^(1/2),x)

[Out]

-x^(1/2)/(x*(c*x^2+b*x+a))^(1/2)*(c*x^2+b*x+a)^(1/2)/a^(1/2)*ln((2*a+b*x+2*a^(1/2)*(c*x^2+b*x+a)^(1/2))/x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{{\left (c x^{2} + b x + a\right )} x} \sqrt{x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(x*(c*x^2+b*x+a))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt((c*x^2 + b*x + a)*x)*sqrt(x)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.70371, size = 315, normalized size = 6.7 \begin{align*} \left [\frac{\log \left (\frac{8 \, a b x^{2} +{\left (b^{2} + 4 \, a c\right )} x^{3} + 8 \, a^{2} x - 4 \, \sqrt{c x^{3} + b x^{2} + a x}{\left (b x + 2 \, a\right )} \sqrt{a} \sqrt{x}}{x^{3}}\right )}{2 \, \sqrt{a}}, \frac{\sqrt{-a} \arctan \left (\frac{\sqrt{c x^{3} + b x^{2} + a x}{\left (b x + 2 \, a\right )} \sqrt{-a} \sqrt{x}}{2 \,{\left (a c x^{3} + a b x^{2} + a^{2} x\right )}}\right )}{a}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(x*(c*x^2+b*x+a))^(1/2),x, algorithm="fricas")

[Out]

[1/2*log((8*a*b*x^2 + (b^2 + 4*a*c)*x^3 + 8*a^2*x - 4*sqrt(c*x^3 + b*x^2 + a*x)*(b*x + 2*a)*sqrt(a)*sqrt(x))/x
^3)/sqrt(a), sqrt(-a)*arctan(1/2*sqrt(c*x^3 + b*x^2 + a*x)*(b*x + 2*a)*sqrt(-a)*sqrt(x)/(a*c*x^3 + a*b*x^2 + a
^2*x))/a]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(1/2)/(x*(c*x**2+b*x+a))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.14507, size = 47, normalized size = 1. \begin{align*} \frac{2 \, \arctan \left (-\frac{\sqrt{c} x - \sqrt{c x^{2} + b x + a}}{\sqrt{-a}}\right )}{\sqrt{-a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(x*(c*x^2+b*x+a))^(1/2),x, algorithm="giac")

[Out]

2*arctan(-(sqrt(c)*x - sqrt(c*x^2 + b*x + a))/sqrt(-a))/sqrt(-a)